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Abstract. The Lie method and Noether's theorem are applied to the double wave equations for the

correlation functions of statistical optics. Generalizations of the deterministic conservation laws are found

and seen to correspond to the usual laws in the deterministic limit. The statistically stationary wave

equations are shown to contain fewer symmetries than for the nonstationary case, so the corresponding

conservation laws di�er from the conservation laws of the nonstationary, two-time, wave equations.

1. Introduction

At optical frequencies, the electric �eld oscillates too rapidly to be measured directly. Instead, detectors

produce a signal proportional to the time-averaged intensity of the �eld. The �eld itself must often be

considered to be stochastic, and most observable quantities are related to the second-order moments of the

�eld: the spectral density, the cross-spectral density, the autocorrelation function, and the cross-correlation

function. The cross-spectral density and the cross-correlation function obey double wave equations, the Wolf

equations [1]. These correlation functions may thus be propagated without knowledge of the underlying

random �elds.

A symmetry of an equation is a transformation which does not alter the set of solutions of the equation.

In this work, a Lie transformation refers to a continuous in�nitesimal transformation, and a Lie symmetry

refers to a Lie transformation which is a symmetry of an equation. The symmetry group of a di�erential

equation is the largest group of continuous transformations in�nitesimally close to the identity element which

leave the set of solutions of the equation unchanged [2]. The symmetry group can be speci�ed by a group of

in�nitesimal generators which de�ne a Lie algebra [2]. The procedure to �nd the symmetry group [2, 3, 4]

is called the Lie method [5]. Symmetries of an equation are closely related to conservation laws. Noether's

theorem [6, 7, 8] provides a method for �nding conservation laws of a di�erential equations arising from a

known Lagrangian L and having a known Lie symmetry.

The study of symmetries and conservation laws of the equations of electromagnetics has played an

important part in the advancement of physics. For example, special relativity was discovered by considering
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the symmetries of the equations of electromagnetics [9, 10]. Lorentz observed that Maxwell's equations [11]

in free space were invariant upon a rotation involving the coordinates of both position and time [12]. This

transformation is now known as a Lorentz transformation. Poincaré and Einstein generalized this concept

to Maxwell's equations with currents and charges [13]. This analysis led to an unintuitive explanation for

the relative lengths and motion of objects traveling near the speed of light.

Symmetry analysis was also used to identify the relationship between the force exerted by a charged

object on another charged object and the force exerted by a current carrying wire on another current carrying

wire. Not long after Maxwell's equations were published, Heaviside observed that they are invariant upon

the discrete symmetry transformation E → B and B → −E, and he explored the implications of this duality

between the electric and magnetic �elds [14]. Larmor and Rainich, however, realized that this relationship is

described by a continuous symmetry which is more general than the relationship found by Heaviside [9, 5, 15].

Fushchich and Nikitin [9, 5] generalized this symmetry to a family of related symmetries and invariants for

Maxwell's equations with and without sources.

More recently, conservation of energy, which is a direct result of the time translation symmetry of the

optical wave equations, has been used to explore variations in the spectrum of light upon propagation.

It was observed that the cross-spectral density of light may vary upon propagation even in free space

[16, 17, 18, 19, 20], and this observation raised questions about whether or not this change violated

conservation of energy in the statistical setting [21]. Energy conservation was shown to be valid and has

been studied thoroughly in both scalar statistical [22, 21, 23, 24] and vector statistical [25, 26] descriptions of

optics. Aside from being of fundamental scienti�c interest, implications of energy conservation in scattering of

stochastic �elds has been shown to have applications in imaging [27, 28, 29]. Energy conservation is just one

conservation law of the second order correlations of stochastic �elds. Others, including momentum, angular

momentum, and their generalizations, may be identi�ed. Many of these conservation laws or invariants may

be discovered through the study of the continuous symmetries of the Wolf equations.

There are three main results in this paper. First, the symmetry group of the wave equations of scalar

statistical optics is derived. Second, corresponding conservation laws are found using Noether's theorem.

Third, changes in the symmetry group of the wave equation that result when the optical signal is assumed to

be stationary are discussed. Conservation laws found include the well-studied conservation laws for energy,

momentum, and angular momentum as well as conservation laws corresponding to inversion and dilatation

symmetries. The general two-time wave equations are found to contain inversion symmetries which are

not present in the stationary wave equations. The paper is organized as follows. In this section, the wave

equations of scalar statistical optics and the procedure to �nd the symmetry group of an equation are

discussed. In Section 2, the symmetry group of the wave equations of scalar statistical optics is derived. In
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Section 2.2, the symmetry group of the wave equations is derived for stationary optical signals. Conservation

laws are discussed in Section 3. Conclusions and future directions are discussed in Section 4.

1.1. Equations of Scalar Statistical Optics

In scalar wave optics, light is described by a deterministic complex analytic scalar �eld, ϕ(r, t), which obeys

a wave equation

∇2ϕ− 1
c2

∂2ϕ

∂t2
= 0. (1)

The scalar statistical description incorporates the e�ects of random �uctuations of optical sources or random

�uctuations introduced when light propagates through the atmosphere [1, 30]. Detectors cannot respond at

optical frequencies, and instead time averaged quantities are measured, usually the time averaged second

moment of the �eld. The cross-correlation Γ(r1, r2; t1, t2), also called mutual coherence, of a random function

is de�ned [30]

Γ(r1, r2; t1, t2) = 〈ϕ∗(r1, t1)ϕ(r2, t2)〉 , (2)

where the angle brackets denote ensemble averaging. In Cartesian coordinates, r1 = x1ax1 + y1ay1 + z1az1

and ∇1 = ∂x1ax1 +∂y1ay1 +∂z1az1 . The cross-correlation for �elds propagating in free space with no sources

obeys a pair of wave equations, called the Wolf equations [1],

∇2
βΓ(r1, r2; t1, t2) =

1
c2

∂2

∂t2β
Γ(r1, r2; t1, t2) (3)

for β = 1 and β = 2. These wave equations govern the propagation of the cross-correlation.

A random process is stationary if all of its probability densities are symmetric with respect to t through

the origin of time, and it is de�ned to be stationary in the wide sense if all of its second order averages

depend on τ = t1 − t2, the di�erence in times, but not t1 and t2 separately [30]. The cross-correlation of a

stationary random process is written

Γ(r1, r2, τ) = 〈ϕ∗(r1, t + τ)ϕ(r2, t)〉 . (4)

If the random process is also ergodic, the ensemble average may be replaced by an time average.

1.2. Lie Method

Consider a set of equations with a set of independent variables χi labeled by i, for example the six components

of r1 and r2 and the time coordinates t1 and t2, and one dependent complex variable Γ. A continuous
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transformation may be denoted χi → A(θ)χi and Γ → A(θ)Γ where θ is a continuous parameter. For a

transformation in�nitesimally close to the identity, the mapping A(θ) may be expressed by a Taylor expansion

[4]

A(θ) = 1 + θU +
1
2
θ2U2 + ... . (5)

The quantity U is called an in�nitesimal generator, and it has the form

U = ηΓ∂Γ + ηΓ∗∂Γ∗ +
∑

i

ξi∂χi . (6)

The functions ξi, ηΓ, and ηΓ∗ may depend on the independent and dependent variables. By exponentiation,

the corresponding transformation may be found from an in�nitesimal generator. The transformation of each

independent variable is given by [4]

χi → eθUχi (7)

which can be written as χi → χi
(
1 + θξi

)
in the limit of small θ. The transformation of the dependent

variable is given by

Γ → eθUΓ (8)

which can be written as Γ → Γ (1 + θηΓ) in the limit of small θ, and similarly, ηΓ∗ = η∗Γ represents the

transformation of the complex conjugate of Γ. The in�nitesimal generators corresponding to all symmetries

form a group [4]. For example, Eq. (1), contains a translation symmetry for each independent variable. Time

translation, which can be denoted t → t+θ, is a symmetry because the set of solutions of Eq. (1) is unaltered

when t is shifted by the constant parameter θ. The corresponding in�nitesimal generator is U = ∂t. The

in�nitesimal transformation can be recovered by exponentiation the in�nitesimal generator eθ∂tt = t + θ.

The procedure to �nd the symmetry group of an equation is based on the idea that a symmetry does

not alter the set of solutions of the equation. When an equation is acted upon by a symmetry described

by the in�nitesimal generator U , the set of solutions of the transformed and original equations are the

same. Additionally, all higher derivatives of the set of solutions of the transformed and original equations

are unchanged. The n-th prolongation of the generator pr(n)U is a generalization of the generator U that

incorporates the transformations of the derivatives of the dependent variables in a manner consistent with

the transformation of the dependent variable. All in�nitesimal symmetries of an equation ∆ = 0 must satisfy

pr(n)U∆ = 0, (9)

for all positive integers n [2]. This in�nitesimal criterion of invariance, also called the symmetry criterion,
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can often be solved for the generators corresponding to all Lie symmetries of the original equation, and this

procedure can be directly generalized to �nd the symmetry group of sets of di�erential equations [2].

The prolongation of an in�nitesimal generator in the form of Eq. (6), with one dependent complex

variable, is given by the expression [2]

pr(n)U = U +
∑

J

ηJ
Γ

∂

∂ (Γ)J

+ ηJ
Γ∗

∂

∂ (Γ∗)J

, (10)

where the index J runs over the set composed of the independent variables, products of two independent

variables, and all products of up to n independent variables, and here the subscript J denotes partial

derivative. For example Γxy = ∂2Γ
∂x∂y . Functions ηJ

Γ are de�ned [2] by

ηJ
Γ =

d

dJ

(
ηΓ −

∑
i

ξi ∂Γ
∂χi

)
+
∑

i

ξi ∂

∂χi
(Γ)J , (11)

where the index i runs over the independent variables. For a di�erential equation of order k, the k-th

prolongation pr(k)U acting on the equation will be equal to all prolongations of order greater than k. Thus,

for a second order di�erential equation, only the second prolongation is needed.

The symmetry group of Eq. (1) was �rst identi�ed in [31], and the symmetry group of Maxwell's

equations was �rst identi�ed in [32]. Both [31] and [32] were written before Lie's work on continuous

symmetries. The Lie method is used to �nd the symmetry group of the wave equation with one dependent

and three independent variables in [2]. In references [9, 5], the Lie method is used to �nd the symmetry

group, and symmetries of Maxwell's equations are discussed in more detail for waves propagating both in

free space and in the presence of sources. The symmetry group of Eqs. (3) is studied here.

Not all symmetries of an equation are Lie symmetries or can be found by the Lie method. Discrete

transformations cannot be represented by in�nitesimal generators and are not Lie symmetries. Certain

discrete, as opposed to continuous, symmetries of the wave equations of scalar and vector statistical optics

have been discussed in [30, 33, 25, 34, 35]. Continuous symmetries which can be described by generators

in the form of Eq. (6) but for which the functions ξi and ηΓ depend on derivatives of the variables

are called dynamical symmetries [2, 3], and they will not be considered in this paper. Nongeometrical

symmetries can be described by in�nitesimal generators but are not continuous [9, 5]. For example, a

nongeometrical symmetry may involve taking a Fourier transform, performing an in�nitesimal translation,

or other continuous transformation, in the frequency domain, then taking an inverse Fourier transform.

Nongeometrical symmetries also will not be considered here.
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1.3. Noether's Theorem

Noether's theorem provides a systematic means to obtain conservation laws from Lie symmetries of two

types: variational symmetries and divergence symmetries. Not all conservation laws can be found from

Noether's theorem [5], yet in many cases it provides a direct procedure for �nding conservation laws. A Lie

symmetry is called variational if and only if its in�nitesimal generator satis�es [2],

pr(n)UL +
∑

i

L
∂ξi

∂χi
= 0, (12)

for an equation or set of equations with independent variables χi and Lagrangian L. A Lie symmetry is

called a divergence symmetry if it satis�es [2],

pr(n)UL +
∑

i

L
∂ξi

∂χi
=
∑

i

∂Bi

∂χi
, (13)

for some vector B =
∑

i Biai where ai denotes the unit vector in the direction of increasing χi. Noether's

theorem states that for both variational and divergence symmetries, corresponding conservation laws can be

found. For a variational symmetry, the conservation law has the form [2]

∑
i

∂Pi

∂χi
= 0, (14)

for a vector P =
∑

i Piai and for a divergence symmetry, the conservation law has the form

∑
i

∂

∂χi
(Pi −Bi) = 0. (15)

In both cases, for an equation with one dependent complex variable, the vector P is given by [2]

Pi = ηΓ
∂L

∂
(

∂Γ
∂χi

) + ηΓ∗
∂L

∂
(

∂Γ∗

∂χi

) + ξiL−
∑

j

ξj ∂Γ
∂χj

∂L

∂
(

∂Γ
∂χi

) + ξj ∂Γ∗

∂χj

∂L

∂
(

∂Γ∗

∂χi

)
 . (16)

Noether's theorem has been used to �nd the conservation laws corresponding to all of the types of Lie

symmetries of Eq. (1) and of Maxwell's equations [9, 5, 2, 36, 37]. Also, certain conservation laws for the

sets of wave equations for the cross-correlations in scalar statistical optics [22, 30, 21] and vector statistical

optics [25, 35, 26] have been studied though not systematically nor exhaustively.
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2. Lie Analysis

In this section, the symmetry group of the two-time wave equations for the cross-correlation, de�ned by

Eq. (2), is derived using the Lie method described above. Subsequently, the symmetry group of the di�erential

equations of the cross-correlation for the stationary case, de�ned in Eq. (4), is derived. It is seen that a

reduction in the number of independent variables results in a reduction of symmetries of the di�erential

equations.

2.1. Two-Time Wave Equations

The pair of equations for the cross-correlation of an optical signal described in scalar-statistical optics, given

by Eq. (3), can be written as

∆β = ∇2
βΓ− 1

c2

∂2Γ
∂t2β

= 0 (17)

where β = 1 and 2. These equations have one dependent complex variable Γ and eight independent variables

which are given by r1, r2, t1, and t2. In this section, the Lie method is used to �nd the in�nitesimal

generators of the symmetry group of the set of equations. The generators have the form of Eq. (6). The

symmetries of Eqs. (17) are derived without considering boundary conditions. For a symmetry to be present

in an application, it must be present in both the underlying equations and the boundary conditions. For

this reason, the symmetries present in any application will be a subset of the symmetries found here.

The symmetry criteria for Eqs. (17) can be found using Eq. (9),

pr(n)U∆β = η
xβxβ

Γ + η
yβyβ

Γ + η
zβzβ

Γ − 1
c2

η
tβtβ

Γ = 0. (18)

The functions η
xβxβ

Γ , η
yβyβ

Γ , η
zβzβ

Γ , and η
tβtβ

Γ are de�ned by Eq. (11), and a related equation holds for ηΓ∗ .

Using the Lie method, it is possible to determine all functions ξi and ηΓ that satisfy the criteria of Eqs. (18).

The symmetry criteria can only be satis�ed when ∂ξi

∂Γ = ∂2ηΓ
∂Γ2 = 0. Thus, the symmetry criteria may be

written as

(
∇2

βηΓ −
1
c2

∂2ηΓ

∂t2β

)
+ 2

(
∇βΓ · ∇β

∂ηΓ

∂Γ
− 1

c2

∂Γ
∂tβ

∂ηΓ

∂Γ∂tβ
+∇βΓ∗ · ∇β

∂ηΓ

∂Γ∗ −
1
c2

∂Γ∗

∂tβ

∂ηΓ

∂Γ∗∂tβ

)
(19)

−
∑

i

[
2
(
∇βξi · ∇β

∂Γ
∂χi

− 1
c2

∂2Γ
∂tβ∂χi

∂ξi

∂tβ

)
+

∂Γ
∂χi

(
∇2

βξi − 1
c2

∂2ξi

∂t2β

)]
= 0

where the index i runs over the independent variables.

First consider transformations for which all ξi = 0. In this case, Eqs. (19) are of the form of Eq. (17),



Symmetries and Conservation Laws for the Wave Equations of Scalar Statistical Optics 8

so the symmetry criteria can be satis�ed by ηΓ = Γ. All linear equations contain the symmetry Γ → Γ + θΓ

which corresponds to the in�nitesimal generator U = Γ∂Γ + Γ∗∂Γ∗ [2]. The symmetry criteria can also be

satis�ed when ηΓ = γ where γ is any solution of Eqs. (17) written as a function of the independent variables.

Additionally, the symmetry criteria can be satis�ed by U = Γ∗∂Γ + Γ∂Γ∗ .

Next consider transformations for which ηΓ = ηΓ∗ = 0. From the term ∇βξi · ∇β
∂Γ
∂χi − 1

c2
∂2Γ

∂tβ∂χi
∂ξi

∂tβ
,

the functions ξxβ , ξyβ , ξzβ , and ξtβ cannot depend on the variables xβ̄ , yβ̄ , zβ̄ , and tβ̄ where β̄ = 1 when

β = 2 and where β̄ = 2 when β = 1. Furthermore, the following relationships must hold,

∂ξyβ

∂xβ
+

∂ξxβ

∂yβ
=

∂ξzβ

∂xβ
+

∂ξxβ

∂zβ
=

∂ξyβ

∂zβ
+

∂ξzβ

∂yβ
= 0, (20)

∂ξtβ

∂xβ
− 1

c2

∂ξxβ

∂tβ
=

∂ξtβ

∂yβ
− 1

c2

∂ξyβ

∂tβ
=

∂ξtβ

∂zβ
− 1

c2

∂ξzβ

∂tβ
= 0, (21)

and

∂ξxβ

∂xβ
=

∂ξyβ

∂yβ
=

∂ξzβ

∂zβ
=

∂ξtβ

∂tβ
. (22)

Using Eqs. (20) and (22),

∂2ξxβ

∂y2
β

= − ∂2ξyβ

∂xβ∂yβ
= −∂2ξxβ

∂x2
β

. (23)

Similar relationships hold for the other independent variables, and

∂2ξi

∂x2
β

=
∂2ξi

∂y2
β

=
∂2ξi

∂z2
β

=
∂2ξi

∂t2β
= 0. (24)

Since Eqs. (17) describe a pair of equations, the above conditions apply when β = 1 and when β = 2. Using

these conditions, the in�nitesimal generators with ηΓ = 0 may be found. The in�nitesimal generators of

Eqs. (17) include eight translations,

U = ∂χi , (25)

where χi stands for each independent variable. The generators include six rotations,

U = xβ∂yβ
− yβ∂xβ

, U = xβ∂zβ
− zβ∂xβ

, U = zβ∂yβ
− yβ∂zβ

, (26)

and six hyperbolic rotations,

U = tβ∂xβ
+

1
c2

xβ∂tβ
, U = tβ∂yβ

+
1
c2

yβ∂tβ
, U = tβ∂zβ

+
1
c2

zβ∂tβ
. (27)
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The generators also include two dilatations,

U = rβ · ∇β + tβ∂tβ
. (28)

These generators include rotations amongst the coordinates of rβ and the coordinates of rβ̄ separately but

not rotations between the coordinates of rβ and rβ̄ together.

Only cases where some or all of the ξi along with ηΓ and ηΓ∗ are nonzero remain to be considered. The

following generators satisfy the symmetry criteria.

U =
(
x2

β − y2
β − z2

β + c2t2β
)
∂xβ

+ 2xβyβ∂yβ
+ 2xβzβ∂zβ

+ 2xβtβ∂tβ
− 2Γxβ∂Γ − 2Γ∗xβ∂Γ∗ , (29)

U = 2xβyβ∂xβ
+
(
−x2

β + y2
β − z2

β + c2t2β
)
∂yβ

+ 2yβzβ∂zβ
+ 2yβtβ∂tβ

− 2Γyβ∂Γ − 2Γ∗yβ∂Γ∗ , (30)

U = 2xβzβ∂xβ
+ 2yβzβ∂yβ

+
(
−x2

β − y2
β + z2

β + c2t2β
)
∂zβ

+ 2zβtβ∂tβ
− 2Γzβ∂Γ − 2Γ∗zβ∂Γ∗ , (31)

U = 2xβtβ∂xβ
+ 2yβtβ∂yβ

+ 2zβtβ∂zβ
+

1
c2

(
x2

β + y2
β + z2

β + c2t2β
)
∂tβ

− 2Γtβ∂Γ − 2Γ∗tβ∂Γ∗ . (32)

The symmetries corresponding to these in�nitesimal generators are are known as inversion symmetries [2].

Equations (29) - (32) specify eight inversion generators for β=1 and β = 2. Inversion symmetries are

members of the conformal group [5, 31]. By de�nition [38], a conformal transformation is a transformation

which preserves the angles between the coordinate axes.

It may be seen that the in�nitesimal generators for the two-time wave equations, Eqs. (17), are the

generators for the wave equation of the deterministic �eld, Eq. (1), repeated over both sets of four coordinates

xβ , yβ , zβ , and tβ . In the next section, it is seen that this is not the case for the wave equations for the

cross-correlations of the stationary �elds.

2.2. Lie Analysis of Wave Equations of Stationary Statistical Optics

Most physical optical systems which are described in scalar statistical optics are well modeled by assuming

the signals are stationary and ergodic [33]. The wave equations for the cross-correlation function of a

stationary random processes can be written with seven, as opposed to eight independent variables. All

stationary random processes contain time translation symmetries for both t1 and t2 which allows the cross-

correlation to be written as a function of τ = t1 − t2 as opposed to the time coordinates individually. The

cross-correlation of stationary random processes described in scalar statistical optics obeys the pair of wave

equations

Λβ = ∇2
βΓ− 1

c2

∂2Γ
∂τ2

= 0 (33)
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for β = 1 and β = 2. In this section, the symmetry group of Eqs. (33) is derived. These equations involve

one dependent complex variable Γ and seven independent variables given by r1, r2, and τ .

The symmetry group of Eqs. (33) can be found using the Lie method. In�nitesimal generators have the

form of Eq. (6). The symmetry criteria for Eqs. (33) are

pr(n)UΛβ = η
xβxβ

Γ + η
yβyβ

Γ + η
zβzβ

Γ − 1
c2

ηττ
Γ = 0. (34)

The functions η
xβxβ

Γ , η
yβyβ

Γ , η
zβzβ

Γ , and ηττ
Γ are de�ned by Eq. (11). Unlike in the two-time case, the two

symmetry criteria, with β = 1 and 2, are coupled because they both involve the function ηττ
Γ . As in the

two-time case, and for the same reasons, to satisfy the symmetry criteria, both ∂ξi

∂Γ and ∂2ηΓ
∂Γ2 must be zero.

Thus, the symmetry criteria can be written as

(
∇2

βΓ− 1
c2

∂2ηΓ

∂τ2

)
+ 2

(
∇βΓ · ∇β

∂ηΓ

∂Γ
− 1

c2

∂Γ
∂τ

∂ηΓ

∂Γ∂τ
+∇βΓ∗ · ∇β

∂ηΓ

∂Γ∗ −
1
c2

∂Γ∗

∂τ

∂ηΓ

∂Γ∗∂τ

)
−
∑

i

[
2
(
∇βξi · ∇β

∂Γ
∂χi

− 1
c2

∂2Γ
∂τ∂χi

∂ξi

∂τ

)
+

∂Γ
∂χi

(
∇2

βξi − 1
c2

∂2ξi

∂τ2

)]
= 0. (35)

As in the case of the two-time wave equations, some symmetries involve only transformations of the

dependent variable, and for these symmetries, all ξi are zero. Equations (33) are linear, so ηΓ = Γ satis�es

the symmetry criteria. The symmetry criteria also can be satis�ed by η = γ where γ is any solution of

Eq. (33) written as a function of the independent variables. Additionally, the symmetry criteria is satis�ed

by U = Γ∂Γ∗ + Γ∗∂Γ.

Equations (33) also contains some symmetries, with ηΓ = 0, which involve transformations of the

independent variables but not Γ. For the term
(
∇βξi · ∇β

∂Γ
∂χi − 1

c2
∂2Γ

∂τ∂χi
∂ξi

∂τ

)
to satisfy the symmetry criteria,

the functions ξxβ , ξyβ , and ξzβ cannot depend on xβ̄ , yβ̄ , and zβ̄ , so Eq. (20) again holds. However, here

Eqs. (21) and (22) are replaced by the expressions

∂ξτ

∂xβ
− 1

c2

∂ξxβ

∂τ
=

∂ξτ

∂yβ
− 1

c2

∂ξyβ

∂τ
=

∂ξτ

∂zβ
− 1

c2

∂ξzβ

∂τ
= 0, (36)

and

∂ξxβ

∂xβ
=

∂ξyβ

∂yβ
=

∂ξzβ

∂zβ
=

∂ξτ

∂τ
. (37)

For the last term of Eq. (35) to satisfy the symmetry criteria, all ξi must be at most linear in the independent

variables.

Similar to Eqs. (17), the resulting symmetries of Eqs. (33), with ηΓ = 0, can be classi�ed as translations,
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rotations, and dilatations. The in�nitesimal generators of Eqs. (33) include seven translations which are given

by Eq. (25) where χi ranges over seven rather than eight independent variables. They also include six rotation

generators given by Eq. (26) and three hyperbolic rotation generators, which involve τ rather than t1 and

t2, represented by

U = τ∂xβ
+ τ∂xβ̄

+
1
c2

(
xβ + xβ̄

)
∂τ , (38)

U = τ∂yβ
+ τ∂yβ̄

+
1
c2

(
yβ + yβ̄

)
∂τ , (39)

and

U = τ∂zβ
+ τ∂zβ̄

+
1
c2

(
zβ + zβ̄

)
∂τ . (40)

They also include one dilatation generator

U =
7∑

i=1

χi∂χi (41)

rather than the two generators given by Eq. (28).

Equations (33) contain no symmetries for which ηΓ and at least one of the ξi are nonzero. It is not

possible to �nd choices of ηΓ and ξi for which terms of Eq. (35) are individually nonzero yet sum to zero.

Consider the possibility ηΓ = −2Γxβ for which the second term of Eq. (35) is nonzero. This choice satis�es

the condition that ηΓ must be at most linear in Γ. Other choices of the independent variable could be made.

As in the two-time case, from the term
(
∇βξi · ∇β

∂Γ
∂χi − 1

c2
∂2Γ

∂τ∂χi
∂ξi

∂τ

)
, generators must satisfy Eqs. (20),

(36), and (37). Thus, both ∂ξxβ

∂xβ
= ∂ξτ

∂τ and ∂ξ
x

β̄

∂xβ̄
= ∂ξτ

∂τ must be satis�ed, and from Eqs. (36) and (37),

∂2ξxβ

∂τ2
= c2 ∂2ξτ

∂x2
β

. (42)

However, Eq. (42) cannot be satis�ed because ξxβ cannot depend on xβ̄ . Thus, no inversion symmetries can

be found.

Both Eqs. (17) and (33) contain many of the same types of symmetries, including translations, rotations,

hyperbolic rotations, dilatations, and symmetries due to linearity. However, since Eqs. (33) involve fewer

independent variables, fewer in�nitesimal generators are needed span the Lie algebra than for Eqs. (17).

Unlike Eqs. (17), Eqs. (33) do not contain inversion symmetries.
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3. Conservation Laws

In this section, Noether's theorem is applied to Lie symmetries derived in Section 2 to �nd conservation laws

for the cross-correlation function for both the two-time and stationary cases. In each case, the conservation

law for the deterministic case is provided to place the generalization to the stochastic case in context. It is

seen that the conservation laws derived for the two-time wave equations encompass and are generalizations

of the conservation laws for the deterministic �elds in the sense that the conservation laws for the cross-

correlation function reduce to the conservation laws for the deterministic �eld in the deterministic limit.

Moreover, conservation laws for deterministic �elds may be seen to have multiple generalizations in the

context of the cross-correlation function for stochastic �elds.

3.1. Two-Time Wave Equations

The Lagrangians for Eqs. (17) are

Lβ = − |∇βΓ|2 +
1
c2

∣∣∣∣ ∂Γ
∂tβ

∣∣∣∣2 , (43)

for β = 1 and β = 2. To determine if Noether's theorem is applicable, the �rst prolongation of a generator

acting on the Lagrangians is needed in applying Eqs. (12),

pr(1)ULβ = −∂Γ∗

∂xβ
η

xβ

Γ − ∂Γ∗

∂yβ
η

yβ

Γ − ∂Γ∗

∂zβ
η

zβ

Γ +
1
c2

∂Γ∗

∂tβ
η

tβ

Γ − ∂Γ
∂xβ

η
xβ

Γ∗ −
∂Γ
∂yβ

η
yβ

Γ∗ −
∂Γ
∂zβ

η
zβ

Γ∗ +
1
c2

∂Γ
∂tβ

η
tβ

Γ∗ . (44)

The functions η
xβ

Γ , η
xβ

Γ∗ , ... are de�ned by Eq. (11).

The translation symmetries are variational because the corresponding in�nitesimal generators satisfy

Eq. (12). For deterministic scalar �elds, the conserved quantity associated with time translation invariance

is called energy Eq. (12). The wave equation for the scalar deterministic �eld, Eq. (1), contains the energy

conservation law in the form of Eq. (14) with

P =
∂ϕ∗

∂t
∇ϕ +

∂ϕ

∂t
∇ϕ∗ +

(
L− 2

c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2
)

at (45)

where L is the Lagrangian of the deterministic wave equation

L = − |∇ϕ|2 +
1
c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 . (46)

For the deterministic case, the at component of P is referred to as the density of the conserved quantity
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while the remaining components are referred to as the �ux density vector. The energy density is de�ned as,

H(r, t) = |∇ϕ|2 +
1
c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 , (47)

and energy �ux density vector is de�ned as

F(r, t) = −
(

∂ϕ∗

∂t
∇ϕ +

∂ϕ

∂t
∇ϕ∗

)
. (48)

The conservation law given by Eqs. (14) and (45) may be cast in the usual form [30]

∂H

∂t
+∇ · F = 0 (49)

The conservation law expressed by Eq. (45) may be derived using Noether's theorem, the Lagrangian L,

and the single generator for time translation symmetry of Eq. (1). For the statistical case, there are two

time coordinates, and the cross-correlation of the �eld is described by two Lagrangians. Thus, there are four

generalizations of Eq. (45). The �rst two generalizations may be found by applying Noether's theorem with

U = ∂tβ
and Lagrangian Lβ , where β = 1 and β = 2. Conservation laws of the form of Eq. (14) result with

P =
∂Γ
∂tβ

(∇βΓ∗) +
∂Γ∗

∂tβ
(∇βΓ) +

(
Lβ −

2
c2

∣∣∣∣ ∂Γ
∂tβ

∣∣∣∣2
)

atβ
. (50)

Taking U = ∂tβ
with Lagrangian Lβ̄ , conservation laws of the form of Eq. (14) result with

P =
∂Γ
∂tβ

(
∇β̄Γ∗)+

∂Γ∗

∂tβ

(
∇β̄Γ

)
+ Lβ̄atβ

− 1
c2

(
∂Γ
∂tβ

∂Γ∗

∂tβ̄
+

∂Γ∗

∂tβ

∂Γ
∂tβ̄

)
atβ̄

. (51)

The generalizations of energy conservation expressed in Eqs. (50) and (51) become redundant and reduce to

Eq. (45) in the deterministic limit where Γ (r1, t1; r2t2) = ϕ∗ (r1, t1) ϕ (r2, t2) , as might be expected.

For deterministic scalar �elds, the conserved quantity associated with spatial translation symmetry

is called momentum [2, 37]. The wave equation for the scalar deterministic �eld, Eq. (1), contains the

momentum conservation law corresponding to translation symmetry of the x coordinate in the form of

Eq. (14) with

P = Lax +
∂ϕ∗

∂x
∇ϕ +

∂ϕ

∂x
∇ϕ∗ − 1

c2

(
∂ϕ∗

∂x

∂ϕ

∂t
+

∂ϕ

∂x

∂ϕ∗

∂t

)
at. (52)

The deterministic wave equation also contains similar conservation laws corresponding to translation

symmetry of the y and z coordinates. The t component of Eq. (52) forms the x component of the so-

called momentum density vector [37],
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P =
1
c2

∂ϕ∗

∂t
∇ϕ +

1
c2

∂ϕ

∂t
∇ϕ∗ (53)

commonly encountered in deterministic wave optics. For the statistical case, there are six spatial coordinates,

and Eqs. (17) are described by two Lagrangians. Thus, there are twelve generalizations of the conservation

laws of the form of Eq. (52). The conservation law for translation symmetry along xβ , given by generator

U = ∂xβ
, and Lagrangian Lβ , for example, has the form of Eq. (16) with

P = Lβaxβ
+

∂Γ
∂xβ

(∇βΓ∗) +
∂Γ∗

∂xβ
(∇βΓ)− 1

c2

(
∂Γ∗

∂tβ

∂Γ
∂xβ

+
∂Γ
∂tβ

∂Γ∗

∂xβ

)
atβ

. (54)

A vector formed by the atβ
components of Eq. (54) along with the atβ

components from similar expressions

found using Lβ with U = ∂yβ
and U = ∂zβ

may be de�ned as a generalization of the momentum density

vector,

Pββ =
1
c2

(
∂Γ∗

∂tβ
∇βΓ +

∂Γ
∂tβ

∇βΓ∗
)

. (55)

Another set of conservation laws generalizing momentum conservation may be obtained by taking translations

along the β coordinate together with the Lagrangian Lβ̄ . For example, for translation symmetry along xβ

and Lagrangian Lβ̄ has the form of Eq. (14) with

P =
∂Γ
∂xβ

(
∇β̄Γ∗)+

∂Γ∗

∂xβ

(
∇β̄Γ

)
+ Lβ̄axβ

− 1
c2

(
∂Γ
∂xβ

∂Γ∗

∂tβ̄
+

∂Γ∗

∂xβ

∂Γ
∂tβ̄

)
atβ̄

, (56)

suggesting the de�nition of another momentum density vector

Pββ̄ =
1
c2

(
∂Γ∗

∂tβ̄
∇βΓ +

∂Γ
∂tβ̄

∇βΓ∗
)

. (57)

As in energy conservation, momentum conservation of Eqs. (54) and (56) reduces to Eq. (52) in the

deterministic limit where Γ (r1, t1; r2t2) = ϕ∗ (r1, t1) ϕ (r2, t2) .

The rotation and hyperbolic rotation generators all correspond to variational symmetries and all satisfy

Eq. (12). In the deterministic case, the conserved quantity associated with rotational symmetry is known as

angular momentum [2]. The generator U = x∂y − y∂x represents rotation about the az axis and provides a

conservation law in the form of Eq. (14) with

P = (−yax + xay) L+
(
−y

∂ϕ

∂x
+ x

∂ϕ

∂y

)(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)
+
(
−y

∂ϕ∗

∂x
+ x

∂ϕ∗

∂y

)(
∇ϕ− 1

c2

∂ϕ

∂t
at

)
. (58)
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The at component of Eq. (58) is

P · at = r× P · az, (59)

where P is de�ned by Eq. (53). Together the at components of the conservation laws corresponding to

rotations about the ax, ay, and az axes are de�ned [37] as the angular momentum density vector M = r×P.

The remaining components of the conservation laws form the angular momentum �ux density. For the

statistical case, the conserved quantities found by applying Noether's theorem using the rotation generators

correspond to generalized angular momenta. The conservation law obtained by applying Noether's theorem

with the generator U = xβ∂yβ
− yβ∂xβ

, corresponding to a rotation about the azβ
axis, and Lagrangian Lβ

is of the form of Eq. (14) with

P = −yβLβaxβ
+ xβLβayβ

+
(
−yβ

∂Γ
∂xβ

+ xβ
∂Γ
∂yβ

)(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)
(60)

+
(
−yβ

∂Γ∗

∂xβ
+ xβ

∂Γ∗

∂yβ

)(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)
.

A generalization of the angular momentum density vector may be de�ned by Mβββ = rβ × Pββ with Pββ

given by Eq. (55). The atβ
component of Eq. (60) may be seen to be identical with the azβ

component of the

generalized angular momentum density Mβββ . Application of Noether's theorem with the generators of the

rotations about the other axes yield corresponding vectors P whose atβ
components are the respective

components of Mβββ . This process may be repeated for the β = 1 and β = 2 cases resulting in six

generalizations of the usual three angular momentum conservation laws. An additional six conservation

laws may be found using the Lagrangian Lβ̄ in which appear an alternative generalization of the angular

momentum density vector Mβββ̄ = rβ ×Pββ̄ with Pββ̄ given by Eq. (57). For example, the conservation law

found using the generator U = xβ∂yβ
− yβ∂xβ

and Lagrangian Lβ̄ is of the of Eq. (14) with

P = −yβLβ̄axβ
+ xβLβ̄ayβ

+
(
−yβ

∂Γ
∂xβ

+ xβ
∂Γ
∂yβ

)(
∇β̄Γ∗ − 1

c2

∂Γ∗

∂tβ̄
atβ̄

)
(61)

+
(
−yβ

∂Γ∗

∂xβ
+ xβ

∂Γ∗

∂yβ

)(
∇β̄Γ− 1

c2

∂Γ
∂tβ̄

atβ̄

)
.

As for energy conservation, Eq. (61) reduces to Eq. (60) in the deterministic limit where Γ (r1, t1; r2t2) =

ϕ∗ (r1, t1) ϕ (r2, t2) .

The hyperbolic rotations also correspond to variational symmetries for both the deterministic and

statistical wave equations, and conservation laws may be found using Noether's theorem. Using Eq. (7)
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it may be seen that the hyperbolic rotation generators of the deterministic wave equation correspond to the

Lorentz transformations of special relativity. For example, for the deterministic wave equations, using the

generator U = t∂x + 1
c2 x∂t and the Lagrangian L, a conservation law in the form of Eq. (14) is found with

P =
(

tax +
1
c2

xat

)
L +

(
t
∂ϕ

∂x
+

1
c2

x
∂ϕ

∂t

)(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)
+
(

t
∂ϕ∗

∂x
+

1
c2

x
∂ϕ∗

∂t

)(
∇ϕ− 1

c2

∂ϕ

∂t
at

)
.

(62)

For the statistical wave equations, the generator U = tβ∂xβ
+ 1

c2 xβ∂tβ
along with Lagrangian Lβ corresponds

to a conservation law in the form of Eq. (14) with

P =
(

tβaxβ
+

1
c2

xβatβ

)
Lβ +

(
tβ

∂Γ
∂xβ

+
1
c2

xβ
∂Γ
∂tβ

)(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)
(63)

+
(

tβ
∂Γ∗

∂xβ
+

1
c2

xβ
∂Γ∗

∂tβ

)(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)
.

In the deterministic case with three hyperbolic rotation generators and one Lagrangian, three independent

conservation laws are found. In the statistical case with six hyperbolic rotation generators and two

Lagrangians, twelve independent conservation laws are found.

Both the deterministic wave equation, Eq. (1), and the statistical wave equations, Eqs. (17), contain

dilatation symmetries and corresponding conservation laws. Using Eq. (7), it may be seen that the dilatation

generators describe the continuous symmetry where all of the variables are scaled by the same constant,

χi → χieθ, for constant θ. Applications of dilatation symmetry are discussed in [31, 39]. In the deterministic

case, the single Lagrangian along with the generator

U = r · ∇+ t∂t − ϕ∂ϕ − ϕ∗∂ϕ∗ , (64)

which is a linear combination of the dilatation and linearity generators [2], corresponds to a conservation

law in the form of Eq. (14) with

P = (r + tat) L +
(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)(
ϕ + r · ∇ϕ + t

∂ϕ

∂t

)
+
(
∇ϕ− 1

c2

∂ϕ

∂t
at

)(
ϕ∗ + r · ∇ϕ∗ + t

∂ϕ∗

∂t

)
.

(65)

As above, the at component of Eq. (65) may be considered the density while the remaining components may

be considered the �ux density vector. Similarly, for the statistical case of Eqs. (17), two linearly independent
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conservation laws may be found using the generator

U = rβ · ∇β + tβ∂tβ
− Γ∂Γ − Γ∗∂Γ∗ , (66)

along with the two Lagrangians. For this generator and Lagrangian Lβ , Eqs. (17) contain a conservation

law in the form Eq. (14) with

P =
(
rβ + tβatβ

)
Lβ +

(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)(
Γ + rβ · ∇βΓ + tβ

∂Γ
∂tβ

)
(67)

+
(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)(
Γ∗ + rβ · ∇βΓ∗ + tβ

∂Γ∗

∂tβ

)
.

Also, the generator of Eq. (66) along with Lβ̄ corresponds to a conservation law in the form of Eq. (14) with

P =
(
rβ + tβatβ

)
Lβ̄ +

(
∇β̄Γ∗ − 1

c2

∂Γ∗

∂tβ̄
atβ̄

)(
2Γ + rβ · ∇βΓ + tβ

∂Γ
∂tβ

)
(68)

+
(
∇β̄Γ− 1

c2

∂Γ
∂tβ̄

atβ̄

)(
2Γ∗ + rβ · ∇βΓ∗ + tβ

∂Γ∗

∂tβ

)
.

In the deterministic limit where Γ (r1, t1; r2t2) = ϕ∗ (r1, t1) ϕ (r2, t2) , the conservation law speci�ed by

Eq. (67) reduces to the conservation law of the deterministic �eld due to the dilatation symmetry.

The deterministic wave equation, Eq. (1), contains inversion symmetries. With four inversion generators

and a single Lagrangian, four linearly independent conservation laws may be found. For example the inversion

generator of the deterministic wave equation,

U =
(
x2 − y2 − z2 + c2t2

)
∂x + 2xy∂y + 2xz∂z + 2tx∂t − 2ϕx∂ϕ − 2ϕ∗x∂ϕ∗ , (69)

corresponds to a divergence symmetry. Using Noether's theorem, a conservation law may be found in the

form of Eq. (15) with

B = 2 |ϕ|2 ax, (70)

and

P = 2xL (yay + zaz + tat) +
(
x2 − y2 − z2 + c2t2

)
Lax (71)

+
(
x2 − y2 − z2 + c2t2

) ∂ϕ

∂x

(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)
+ 2x

(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)(
ϕ + y

∂ϕ

∂y
+ z

∂ϕ

∂z
+ t

∂ϕ

∂t

)
+
(
x2 − y2 − z2 + c2t2

) ∂ϕ∗

∂x

(
∇ϕ− 1

c2

∂ϕ

∂t
at

)
+ 2x

(
∇ϕ− 1

c2

∂ϕ

∂t
at

)(
ϕ∗ + y

∂ϕ∗

∂y
+ z

∂ϕ∗

∂z
+ t

∂ϕ∗

∂t

)
.
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In the statistical case, there are eight inversion generators of the statistical wave equations along with two

Lagrangians, so sixteen linearly independent conservation laws may be found for Eqs. (17). The inversion

generators correspond to divergence symmetries because they satisfy Eq. (13). As an example, consider

the inversion generator given in Eq. (29) and Lagrangian Lβ . This generator corresponds to a divergence

symmetry,

pr(1)ULβ + Lβ

∑
i

∂ξi

∂χi
= 2Γ

∂Γ∗

∂xβ
+ 2Γ∗ ∂Γ

∂xβ
, (72)

with

B = 2 |Γ|2 axβ
. (73)

This generator leads to a conservation law in the form of Eq. (15) with P speci�ed by Eq. (16),

P = 2xβLβ

(
yβayβ

+ zβazβ
+ tβatβ

)
+
(
x2

β − y2
β − z2

β + c2t2β
)
Lβaxβ

(74)

+
(
x2

β − y2
β − z2

β + c2t2β
) ∂Γ

∂xβ

(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)
+ 2xβ

(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)(
Γ + yβ

∂Γ
∂yβ

+ zβ
∂Γ
∂zβ

+ tβ
∂Γ
∂tβ

)
+
(
x2

β − y2
β − z2

β + c2t2β
) ∂Γ∗

∂xβ

(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)
+ 2xβ

(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)(
Γ∗ + yβ

∂Γ∗

∂yβ
+ zβ

∂Γ∗

∂zβ
+ tβ

∂Γ∗

∂tβ

)
.

The generator of Eq. (29) along with Lβ̄ also corresponds to a divergence symmetry. The associated

conservation law is in the form of Eq. (15) with

B = 2xβ

(
Γ∗∇β̄Γ + Γ∇β̄Γ∗)− atβ̄

2
c2

xβ

(
Γ∗ ∂Γ

∂tβ̄
+ Γ

∂Γ∗

∂tβ̄

)
, (75)

and

P = 2xβLβ̄

(
yβayβ

+ zβazβ
+ tβatβ

)
+
(
x2

β − y2
β − z2

β + c2t2β
)
Lβ̄axβ

(76)

+
(
x2

β − y2
β − z2

β + c2t2β
) ∂Γ

∂xβ

(
∇β̄Γ∗ − 1

c2

∂Γ∗

∂tβ̄
atβ̄

)
+ 2xβ

(
∇β̄Γ∗ − 1

c2

∂Γ∗

∂tβ̄
atβ̄

)(
Γ + yβ

∂Γ
∂yβ

+ zβ
∂Γ
∂zβ

+ tβ
∂Γ
∂tβ

)
+
(
x2

β − y2
β − z2

β + c2t2β
) ∂Γ∗

∂xβ

(
∇β̄Γ− 1

c2

∂Γ
∂tβ̄

atβ̄

)
+ 2xβ

(
∇β̄Γ− 1

c2

∂Γ
∂tβ̄

atβ̄

)(
Γ∗ + yβ

∂Γ∗

∂yβ
+ zβ

∂Γ∗

∂zβ
+ tβ

∂Γ∗

∂tβ

)
.

As above, the at component of Eq. (71) is the called density of the conserved quantity while the remaining

terms are called the �ux density vector. Similarly, the atβ
component of Eq. (74) is the generalized density

while the remaining terms are a generalization of the �ux density vector of the conserved quantity.
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3.2. Stationary Wave Equations

Noether's theorem may also be used to �nd conservation laws for the wave equations for the cross-correlation

of stationary stochastic �elds. The Lagrangians of Eq. (33) are

Lβ = − |∇βΓ|2 +
1
c2

∣∣∣∣∂Γ
∂τ

∣∣∣∣2 . (77)

Using Noether's theorem and translation generators, conservation laws can be found corresponding to

conservation of generalized energy and generalized momentum density. With seven translation generators

and two Lagrangians, fourteen linearly independent conservation laws can be found. In the stationary case,

because there is only one time coordinate, there are only two generalizations of conservation of energy. With

the generator U = ∂τ and Lagrangian Lβ , the generalized energy conservation law has the form of Eq. (14)

with

P =
∂Γ
∂τ

(∇βΓ∗) +
∂Γ∗

∂τ
(∇βΓ) +

(
Lβ −

2
c2

∣∣∣∣∂Γ
∂τ

∣∣∣∣2
)

aτ . (78)

For the conservation law of Eq. (78), the aτ component
(
Lβ − 2

c2

∣∣∂Γ
∂τ

∣∣2) may be considered the generalized

energy density, and the remaining components may be considered the generalized energy �ux density vector.

This conservation law is related to the conservation law of Eqs. (50) and (51) for the two-time wave equations.

It may be seen by making the change of variables τ = t1− t2 and T = t1+t2
2 and enforcing ∂Γ

∂T = 0, essentially

a restatement of stationarity, that Eqs. (50) and (51) become redundant and equivalent to Eq. (78). However,

since the cross-correlation function in the stationary case depends on only one time coordinate, there is no

direct path to a deterministic limit for Eq. (78). That is, Eq. (78) expresses a conservation law unique to

the statistically stationary setting.

Conservation laws may also be found for the spatial translation generators for Eqs. (33) as for the two-

time wave equations. The momentum conservation laws again take the form of Eq. (14) with P as given in

Eqs. (54) and (56) but with tβ → τ.

Conservation laws of the rotation and hyperbolic rotation generators in the stationary and two-time

cases are also closely related. For the generator U = xβ∂yβ
− yβ∂xβ

, for example, the conservation law from

Noether's theorem and Lagrangian Lβ has the form of Eq. (14) with P as given in Eq. (60) with tβ → τ .

Also, a conservation law may be found using Lagrangian Lβ̄ which has the form of Eq. (14) with P as given

in Eq. (61) again with tβ → τ . The hyperbolic rotation generator of Eq. (38) corresponds to a conservation
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law in the form of Eq. (14) with

P =
[
τaxβ

+ τaxβ̄
+

1
c2

(
xβ + xβ̄

)
aτ

]
Lβ (79)

+
(
∇βΓ∗ − 1

c2

∂Γ∗

∂τ
aτ

)[
τ

∂Γ
∂xβ

+ τ
∂Γ
∂xβ̄

+
1
c2

(
xβ + xβ̄

) ∂Γ
∂τ

]
+
(
∇βΓ− 1

c2

∂Γ
∂τ

aτ

)[
τ

∂Γ∗

∂xβ
+ τ

∂Γ∗

∂xβ̄

+
1
c2

(
xβ + xβ̄

) ∂Γ∗

∂τ

]
. (80)

The conservation laws for the hyperbolic rotation generators in the stationary case results from two

conservation laws for the hyperbolic rotation generators in the two-time case. The conservation law of

Eq. (79) of the stationary case may be found by summing the conservation laws for Lagrangian Lβ along

with generators U = tβ∂xβ
+ 1

c2 xβ∂tβ
and U = tβ̄∂xβ̄

+ 1
c2 xβ̄∂tβ̄

in the two-time case then taking tβ → τ .

Equations (33) have one dilatation symmetry and two Lagrangians, so two linearly independent

conservation laws may be found as opposed to four in the case of the two-time wave equations. The generator

U = −5
2
Γ∂Γ −

5
2
Γ∗∂Γ∗ +

∑
i

χi∂χi , (81)

which is a linear combination the dilatation generator and the linearity generator, corresponds to a variational

symmetry. This generator along with Lagrangian Lβ corresponds to a conservation law in the form of Eq. (14)

where

P =
(
∇βΓ∗ − 1

c2

∂Γ∗

∂tβ
atβ

)(
5
2
Γ +

∑
i

χi ∂Γ
∂χi

)
+
(
∇βΓ− 1

c2

∂Γ
∂tβ

atβ

)(
5
2
Γ∗ +

∑
i

χi ∂Γ∗

∂χi

)
+Lβ

(∑
i

χiai

)
.

(82)

Equations (33) do not contain inversion symmetries, so no corresponding conservation laws can be found.

For each in�nitesimal generator U of the inversion symmetries, the corresponding conservation law in the

two-time case may be simpli�ed to the form

∑
i

∂ (Pi −Bi)
∂χi

= 0 =

(
∇2

βΓ− 1
c2

∂2Γ
∂t2β

)
(UΓ∗) +

(
∇2

βΓ∗ − 1
c2

∂2Γ∗

∂t2β

)
(UΓ) (83)

where UΓ represents the cross-correlation upon the symmetry transformation. In order for such a

conservation law, which appears for the nonstationary �elds, to also hold for the stationary �elds, both

Γ and UΓ must be independent of T = t1+t2
2 . It may be seen that this can only be true for Γ = 0, so the

conservation laws arising from the inversion symmetry in the two-time case become trivial for stationary

�elds.
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4. Conclusion

The symmetries and conservation laws for the Wolf equations are studied systematically here by the Lie

method and Noether's theorem. All of the symmetries of the deterministic case are found in the two-time

stochastic case but for both sets of coordinates. The stationary stochastic case is di�erent in that some

symmetries are eliminated. The two-time stochastic case contains generalizations of all of the conservation

laws of the deterministic case, and the deterministic limit may be taken to obtain the deterministic

conservation laws as a special case. For example, the four energy conservation laws of the two-time case

reduce to the one conservation law for the deterministic case in the deterministic limit. In the stationary

case some conservation laws for the two-time case reduce or coalesce to corresponding laws for the stationary

case. For example, the four energy conservation laws in the two-time case become two conservation laws for

the stationary case. In other instances, conservation laws are simply eliminated in going from the two-time

case to the stationary case, such as the conservation law resulting from the inversion symmetries.
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